
EDM and Framework

October 19, 2004

Abstract

In this document, the LPC EDM working group will present our
observations and views on the current CMS EDM and frame-
work. These are supported by a small collection of critical
use cases, based on our previous experience at collider exper-
iments. These use cases will help to define, illustrate, and
capture the desired functionality of an EDM and framework.

Contents

1 Introduction 4

2 Findings 6
2.1 Reconstruction on Demand 6

2.1.1 Reconstruction on Demand - Advantages 6
2.1.2 Reconstruction on Demand - Disadvantages . . 7

3 Use Cases 9
3.1 Trigger . 9

3.1.1 Start algorithm B only if Algorithm A finished
successfully . 10

3.1.2 Start algorithm C only if Algorithm A finished
successfully and Algorithm B didn’t find any
object . 10

3.1.3 Use RecCollection created by an algorithm cor-
rectly in a second algorithm. 10

1

3.1.4 On line Monitoring of data quality 11
3.2 Reconstruction . 11

3.2.1 Creating hierarchical objects 11
3.2.2 Creating a new algorithm (Vertex fitter) 12
3.2.3 Create new algorithm and make persistent . . . 12

3.3 Analysis . 13
3.3.1 Find out which algorithms have been run al-

ready within an event 13
3.3.2 Print to Standard Output the Pt of tracks . . . 13
3.3.3 Locating EMobjects and references Tracks . . . 13
3.3.4 Comparing two track collections 14
3.3.5 Navigating hierarchical objects 14
3.3.6 Run the detector simulation and reconstruc-

tion with a different geometry 15
3.3.7 Create more Monte Carlo Data 15
3.3.8 Analysis without framework 16
3.3.9 User Interface: Interacting with the framework 16
3.3.10Interaction with physics object/Algorithm . . . 17

3.4 Data Handling and Data Access? 18
3.4.1 Availability of datasets 18
3.4.2 Create self-contained dataset 18
3.4.3 Combining data from different processing streams 18
3.4.4 Make highly condensed datasets available to

collaborators . 20

4 Detailed analysis of selected use cases 20
4.0.5 Analysis of use case 3.3.2: Print to Standard

Output the Pt of tracks 20
4.0.6 Analysis of use case 3.2.3: Create a new algo-

rithm to find the total energy deposited in the
calorimeters for an event. Make the total en-
ergy persistent and write it into the DST. 21

A Glossary 22
A.1 General . 22
A.2 Acronyms of CMS Object-Oriented Projects 23

2

B Source code for use case 3.3.2 23
B.1 BuildFile . 23
B.2 UseCase1.cpp . 25
B.3 orcarc . 26

C Source code for use case 3.2.3 27
C.1 BuildFile . 27
C.2 classes def.xml . 28
C.3 classes.h . 29
C.4 CaloEnergy.h . 29
C.5 CaloEnergyBuilder.cpp 29
C.6 CaloEnergyBuilder.h . 31
C.7 UseCase2.cpp . 32
C.8 orcarc . 33

3

1 Introduction

One of the goals of the LPC (LHC Physics Center) located at Fer-
milab is to set up an offline environment enabling physicists to
engage in physics analysis and to develop software for the CMS ex-
periment. Having such a center in the US will allow the physics
community to actively participate in the CMS experiment while
minimizing the time the individual physicists has to be present
at CERN.

To some extent, this is an experiment by itself. In the past,
major physics analysis centers were hosted at the same laboratory
that hosted the experiment. In contrast, the LPC will be separated
from the experiments by a few thousand miles and several time
zones. Fermilab is in a unique position hosting such a center since
it currently hosts the two collider experiments CDF and D0 and
therefore world experts in various areas of analysis and software
are already located at Fermilab.

An important step in this direction is to take currently existing
expertise and move it to the CMS experiment. A physicist coming to
the LPC needs access to local EDM, framework, and code manage-
ment experts. He/she should find a well-managed and maintained
offline environment which is able to support various analysis and
software development projects. The LPC EDM working group was
established as a first step to develop such a knowledge base by
evaluating the functionality and performance of the current CMS
offline framework and event data model (EDM).

In this document, we will present our observations and views on
the current EDM and framework. These are supported by a small
collection of critical use cases, based on our previous experience at
collider experiments. These use cases will help to define, illustrate,
and capture the desired functionality of an EDM and framework. A
few representative use cases are selected for more detailed analy-
sis, and other use cases that are important but not deemed critical
appear in appendix ??.

In particular, we will evaluate the current CMS system with re-
spect to all infrastructure necessary for a physicist to:

• contribute an algorithm

4

• develop an algorithm

• perform further event analysis using previous results, taking
into account:

– locating input data

– configuring of jobs

– storing results

– recording parameters (provenance)

• know whether the job completed successfully.

• determine the source of any problems (runtime and logic er-
rors, performance related)

• framework and EDM and how this is used in the trigger sys-
tem (high level trigger farm)

• framework and EDM and how it supports test beam analysis.

• an EDM that supports multiple objects of the same type and
ways to locate them

• an EDM that supports schema evolution.

• problems solved once e.g. one way to track parentage of an
event data object

• services provided by the framework

– shared by all modules

– how is the interaction of modules handled

– ntuple and histogram directories are examples

– database connections are an example

– access to mass storage is an example

– various input modules (file, daq...) are examples

– common User interface is an example

5

– means to communicate with other framework or DAQ pro-
cesses are examples. (robust interprocess communica-
tion).

– centralized facilities that physicist does not need to worry
about

• error collection, handling and reporting

• configuration and parameter tracking system

• testing - integration and component

• address issues of required I/O performance

2 Findings

2.1 Reconstruction on Demand

The CMS framework is a specific instance of reconstruction on de-
mand with specific choices made for configuration and rules for
what ”on the fly” means. These choices do not match the needs of
the LPC group. The controls over parameters are not good enough.
CMS now has a one-to-one mapping between request for an object
and the algorithm that produces it. This is apparently a problem in
the input/output specification - it is two simplistic. This is compli-
cated by algorithms that can produce several things and algorithms
that produce things that are used in an abstract fashion. Is it pos-
sible to create a ROD framework that has adequate controls and
configuration and still make it ease to use, or even reasonable?

2.1.1 Reconstruction on Demand - Advantages

• ordering is automatic

• speed - only the things that are needed are run without spe-
cific knowledge of paths and flows. While this is often used
as an argument to use ROD in the Trigger it depends on the
strategy used in the trigger. One possibility is to abort the

6

trigger once a positive decision is made that an event should
be accepted. Another strategy would be to run the entire re-
construction and use the trigger to classify the event for e.g.
sending them into different streams. In the later case ROD
would not provide performance benefits.

• requires algorithm writers to specify all input data require-
ments

2.1.2 Reconstruction on Demand - Disadvantages

List of perceived requirements and issues:

1. Resources

• What is needed? (estimates)

• Are reservations needed?

• How is it determined what is needed to run the job?

2. Control

• Reproducibility

– not everyone wants the latest and greatest version of
code

– People want a known version of the code
– controlled update to code
– the data produced must identify the code that created

it
– No parameters in code
– parameter sets must be tracked in a repository

• Transparency

• Ease of running

• What was run - perceived difficulty is understanding what
is going to be done

• How is it turned off? Requiring the user to know which
items should be turned on or off in a configuration file
(.orcarc) is over-burdensome on the user

7

3. Robustness

• checks not present, problems encountered at runtime dur-
ing event processing

• crashing when algorithm not present when data object is
requested

4. Physical Coupling

• it is harder to minimize the physical coupling between
algorithms

• algorithm code must always be available in order to ac-
cess already reconstructed event objects

• The difficulty in locating required shared libraries, or link-
ing the application code is increased

5. Online

6. Dynamic Linking Required (unwise for online?)

7. We would like to see record of what executable program did in
a log file after running of the job:

• want to see (summary) graph of what happened

• include parameters that triggered paths

8. do not know what triggers the algorithm to go, see explicit
controls. (e.g. We saw that calling an iterator triggered the
ROD mechanism. All such triggers should be intuitive.)

9. We believe there is a need to be able to check for the existence
of event data and it’s associated parameters without causing
expensive resources to be activated (without our knowledge).
There should be a query interface to the EDM

8

3 Use Cases

The following use cases have been chosen because they have been
deemed critical to illustrate the findings above. There are other use
cases which are included in appendix ??.

We have chosen to group the use cases into categories that rep-
resent major chronological steps. Requirements for earlier cate-
gories also apply to later categories.

• Trigger Here we will deal with use cases related to the trigger
meaning the use in the filter farm responsible for the high level
trigger decisions and for streaming out the data into different
data streams. Or related to it the simulation of triggers.

• Reconstruction Here we will deal with use cases related to
reconstruction. A typical task would be developing a new al-
gorithm and make the persistent results.

• Analysis Here we will deal with use cases related to physicists
doing an analysis.

• Data Handling and Data Access Many functions are probably
dealt with by external tools (grid, data catalogs....) but the
framework needs means to interact with these tools ... as well
as different mass storage systems...

3.1 Trigger

For trigger purposes we need filtering, we need the ability to define
a filter path, we need to be able to check the trigger logic which can
be fairly complex in a hadron collider environment. We need to be
able to monitor the decision, estimate efficiencies and times needed
to make a decision (for each module/algorithm). There are strong
demands on configuration management since the trigger needs to
be in a well defined state. So all configuration information defin-
ing this state must be kept. Provenance should be an automatic
framework function and the framework needs to provide the means
to query and retrieve this information. The use in the trigger puts
the most stringent requirements on speed, robustness, and mem-
ory usage on the system.

9

3.1.1 Start algorithm B only if Algorithm A finished success-
fully

Goal: Start algorithm B only if Algorithm A finished successfully
and objects were found
Actor: Framework
Trigger: The code has activated by the presence of a new event.
Description: Want to run Algorithm B only if Algorithm A was exe-
cuted and finished successfully and produced list of output object
with more than 1 entry. (could think of many examples e.g. run
vertex algorithm only after tracking ran and tracks were actually
found.)

3.1.2 Start algorithm C only if Algorithm A finished success-
fully and Algorithm B didn’t find any object

Goal: Start algorithm C only if Algorithm A finished successfully
and Algorithm B didn’t find any object
Actor: Framework
Trigger: The code has activated by the presence of a new event.
Description: Want to run Algorithm C only if Algorithm A was exe-
cuted and finished successfully and produced list of output object
with more than 1 entry and Algorithm B didn’t find any object that
it’s searched for (e.g. run MET algorithm (without muon correc-
tion) only if Jetfinder ran successfully but no muon was found in
the event.)

3.1.3 Use RecCollection created by an algorithm correctly in
a second algorithm.

Goal: Use RecCollection created by an algorithm correctly in a sec-
ond algorithm.
Precondition: Algorithm 1 has created a RecCollection A. Due to
a detector failure, the RecCollection is empty or incomplete.
Actor: Algorithm 2
Description: Algorithm 2 should be able to query the RecCollec-
tion A to see if there were errors in its construction.
Example: Unpacking of a quadrant of a calorimeter fails due to

10

data corruption. The resulting collection of towers is incomplete.
The Missing ET trigger algorithm needs to be able to treat this case
differently than an empty or complete list of towers.

3.1.4 On line Monitoring of data quality

Actor: Monitoring Framework writer
Goal: on line monitoring of data quality. This adds quite a few
requirements to the framework. Here the Processes needs to be
able to receive events in real time (framework function/input mod-
ule/algorithm). Monitor must be able to select events passing a
specific trigger or pass a given filter pass. Analyzing process needs
to communicate with other processes (robust interprocess commu-
nication) .

Description:

1. e.g. collector processes (collecting histograms from many an-
alyzers.)

2. e.g. error logger error receiver

3. e.g. run control (might be the error receiver independent from
the framework doing this communication)

3.2 Reconstruction

3.2.1 Creating hierarchical objects

Goal: Build a high-level (HL) object from a set of lower-level (LL)
objects of varying types.
Precondition: the actor has access to the lower-level objects by
some means beyond the scope of this use case.
Actor: Algorithm writer
Description: A HL object can be composed of multiple LL objects.
An algorithm writer will have to build up the HL object in such a
way that a downstream physicist can access the LL objects as de-
scribed in the previous use case. There should be standard EDM
tools that allow the creation of linkages from the HL object to the LL

11

objects. The actor should not have to know the LL object ID’s, but
should be able to just ”add” the LL object to the HL object. In par-
ticular, if the lower object does not have independent, standalone
status in the event record, but is an element of some other object
(e.g. a hit within a collection of hits), the user shouldn’t even have
to know the element number. If the LL object is itself composed
of multiple subordinate objects (as a segment on a muon track is
composed of individual hits), then its linkages should be naturally
transferred to the HL object.

3.2.2 Creating a new algorithm (Vertex fitter)

Goal: Creates a new algorithm e.g. a Vertex fitter and wants to
store the new object as well as updated tracks in the data stream.
If there is already such an object he wants to add his (new version).
Actor: Algorithm writer
Description:

1. needs to get a list of tracks, access to track parameters and
covariance matrix.

2. needs to be able to select tracks that pass a given set of cuts.

3. needs to associate the tracks used in the fit with the vertex
object, How is association handled in general?

4. needs to store new tracks /track collection since the vertex
constraint improves parameter and error estimates.

3.2.3 Create new algorithm and make persistent

Goal: Create new persistent Algorithm
Actor: Physicist
Trigger: The code was activated by the presence of a new event.
Description: Write a reconstruction algorithm to calculate the to-
tal energy deposited in the calorimeter for an event. Make the en-
ergy persistent and write it into the DST.

12

3.3 Analysis

3.3.1 Find out which algorithms have been run already within
an event

Goal: From within the running framework program processing a
given event, find out which algorithms have already been run with
which version and which configuration within the event.
Actor: Physicist
Trigger: My code was activated by the presence of the a new event.
Description: The event will contain the results of processing by
various algorithms. Within an event, it is needed to query which
algorithms have been run already both to avoid rerunning partic-
ular algorithms and to determine if dependent algorithms can be
started. To make the determination, the parameters used to con-
figure particular algorithms are needed.

3.3.2 Print to Standard Output the Pt of tracks

Goal: Print to Standard Output the Pt of tracks
Actor: Physicist
Trigger: My code has activated by the presence of a new event.
Description: In the current event, I will ask for all those tracks
found by algorithm named X version n, with completely unique
and unambiguous configuration Y. There must be either 0 or 1
collections of tracks associated with this run of the algorithm. If
this version of this algorithm has not previously been run with this
configuration, I will print a message saying it has not been run. If
this algorithm has been run, I will iterate through all those tracks,
printing to standard output the transverse momentum of the track.

3.3.3 Locating EMobjects and references Tracks

Goal: As part of the E/p calibration calculation for a calorimeter,
locate the EMobjects and find the tracks associated with them.
Actor:Physicist
Trigger: The code has activated by the presence of a new event.
Description: Using the event that I was given, I will ask the event
for a collection of EMobjects created by clustering algorithm X out

13

of the first pass of reconstruction. For each EMobject in this col-
lection, I will get the list of references to tracks associated with this
EMobject. If the reference list is empty, then this EMobject should
be skipped. For each references, I want to go back to the event and
resolve it to the actual track instance. If the track instance is not
in the event, then this reference will be skipped. I will use the track
instance to get the track momentum and cluster energy and do the
calculation.

3.3.4 Comparing two track collections

Goal: Do a tracking performance study, comparing efficiency of
two algorithm.
Precondition: A particle gun was used to generate the input sam-
ple. Each event in this sample was generated requesting 10 tracks.
Actor:Physicist
Trigger:
Description: Create an event file, reconstructing data with algo-
rithm X, version 1. Read the event file into another process that
reconstructs the data again using algorithm version 2. This or-
ganization matches the process involving keeping the level-3 trig-
ger tracks and then having production (reconstruction) add tracks
also.

The analysis program, reads in the events, gains access to the
collection of reconstructed Tracks from algorithm X, versions 1 and
2 from each event. Compare the number of tracks in each of the
two different collections.

Note: What is required here? Generating two differently named
classes? Using an abstract interface for tracking (fixed API) with
creation helped by object factories? Is there a concept of transient
representations of tracks?

3.3.5 Navigating hierarchical objects

Goal: From a high-level object, learn about the lower-level objects
that compose it.
Precondition: the actor has been handed the high-level object by
some means beyond the scope of this use case.

14

Actor: Physicist
Trigger:
Description: A high-level (HL) object can be composed of multi-
ple lower-level (LL) objects of different types (which are thus rep-
resented by different classes). A specific example of a HL object
is a muon, which may be composed of a) the track found in the
muon system, b) the segments that form those tracks, c) the hits
that form the segments, d) silicon hits associated with the track,
or possibly an entire silicon track found by other means and as-
sociated with the muon, e) calorimeter towers that the muon has
passed through. The physicist should be able to work downward
through the hierarchy to access the LL objects, i.e. there should
be easy access to the segments, and in turn from the segments to
the hits that form them, for instance. To achieve this, there should
be a straightforward set of accessors that return the LL objects.
Access to the LL objects from the HL object should not require any
knowledge of object ID’s of the former.

3.3.6 Run the detector simulation and reconstruction with a
different geometry

Goal: Wants to run the detector simulation and reconstruction
with a different geometry e.g. to simulate a test beam set up. (e.g.
misaligned better aligned, simpler, new more realistic) how is this
configured and how is this communicated to the different applica-
tions. (geometry stored in the data stream?)
Actor: Developer
Description: How is configuration managed (e.g. standard con-
figuration stored somewhere so that we only need to worry about
differences from the standard.)

3.3.7 Create more Monte Carlo Data

Goal: have a given (MC) data set and wants to create more statis-
tics.
Actor: Physicist
Description:

15

1. Is all the information available to recreate/increase the data
set. (data cards, random seeds, software versions.....)

2. How does the physicist get to this information? (query the
event , external data base)

3.3.8 Analysis without framework

Goal: use familiar tool to look at data
Actor: Physicist
Description:
wants to use a tool that he is familiar with to look at the data. Is it
possible to browse/look at the data without depending on the full
framework/EDM? e.g. one approach would be the case where you
just load in some shared libraries in root which then would allow
you to look at the data with the provided TBrowser.

This issue is also described in document [2] CD-doc-435.

3.3.9 User Interface: Interacting with the framework

Goal: needs unique interface as part of the framework.
Actor: Physicist
Description: wants to interact with the framework/reconstruction
executable e.g. get a list of available commands and their syntax
as well as the default parameters. He wants to find the same envi-
ronment independent of the specific program he is is dealing with.

1. needs common user interface as part of the framework.

2. needs help and show functions for the commands.

3. needs reasonable defaults for all necessary module/algorithms
that have to be initialized. (what happens if you specify no in-
put parameters at all?).

4. list available analysis module/algorithms

5. list current and default settings

6. provide Documentation what this parameters actually mean
(help and show commands)

16

http://computing.fnal.gov/docdb/documents/0004/000435/001/AnalysisSupport.pdf

7. provide check of valid ranges for parameters

8. configure path, decision tree

9. needs to store the commands he typed in (last settings, his-
tory) to use in a batch job afterward and to document his
work.

10. informational message when there is an incorrect input pa-
rameter or incorrect combinations thereof. Ignoring the line
or a seg fault at run time are not acceptable.

11. For each event optionally store decision tree and make it avail-
able for printing.

Comments:

• putting parameters in hidden files (.orcarc) can be very con-
fusing to new users.

• One way to interact with the system is an interactive shell (e.g.
CDF framework, ROOT) which gives the user the possibility to
learn what commands and module/algorithms are available.
Some users like the try and error approach to find out what
works.

• There seems to be a lot of traffic on the mailing lists regarding
the right set of parameters.

• At the moment it seems to be necessary to look into the source
code to figure out what some of the parameters mean.

3.3.10 Interaction with physics object/Algorithm

Goal: Let the object describe itself using a well defined interface
Actor: Physicist
Trigger:
Description: wants to interact with a physics object. He wants the
object to provide him with a (print) method to list all data mem-
bers, all available accessors, all input parameters and all available
functions.

17

3.4 Data Handling and Data Access?

3.4.1 Availability of datasets

Goal: Want to know what data sets are available:
Actor:Physicist
Trigger: wants to start an analysis and wants to know what is
already available.
Description:

1. How does he find out?

2. Wants to know what is in the data sets: Browse the data set,
dump the objects, display the events, find out how the data
set was created, version of code etc., database entry being
used or run conditions

3.4.2 Create self-contained dataset

Goal: create a self contained data set
Actor: Physicist
Trigger: Long trip in airplane without network
Description: wants to download a dataset to his laptop or dvd and
analyze while on the run. Is it possible to create a stand alone self
contained data set which is meaningful without access to e.g. data
bases. What is the price user has to pay? (e.g. no immediate ac-
cess to updated database information, no way to reprocess?) how
can you check that you got everything (all files etc.) besides run-
ning the job and waiting until it crashes.
Comment Another similar example could be a specific grid job
where the process might be required to execute in a sandbox with
no access to data base transactions while running.So the job has
to import its entire environment and input data at start up time.

3.4.3 Combining data from different processing streams

Goal: Runs his job using many processes in parallel on a farm
needs to combine the data produced by the different processing
streams.

18

Actor: Physicist
Trigger: make data set available for collaborators
Description: Runs his job using many processes in parallel on a
farm needs to combine the data produced by the different process-
ing streams.
Comments:

Hans: Finally gave up on this all together. Since I decided it’s
not worth the trouble. Need to write up what I did and the troubles
encountered. Could fill pages with email exchanges and the things
I tried.

• unless running a database Pool doesn’t provide concurrency
so with a plain file catalog you can’t write into the same feder-
ation in parallel.Not an expert in setting up a database. That
means after each processing step one needs to attach your
files etc. to the master Poolfile catalog.

• It adds many more steps to the data handling process (more
than doubles need to add a diagram). Makes processing on a
farm much more complicated and leads to inefficiencies run-
ning the batch system.

• Behavior of e.g. the init data set step is different in different
(OSCAR) versions of the code. Some version we didn’t get t it
working at all, in some versions you had to initialize a gener-
ator (what does that have to do with initializing a data set??
) and you actually needed to put all this unnecessary stuff in
the orcarc file. When not processing an orcarc file at least the
program should respond differently from just crashing. There
was a version that actually was able to initialize the data set
without having to initiate other stuff but then the OSCAR ver-
sion after that couldn’t do that anymore.

• The next step writing independent streams never worked (for
us) it was recognized as a bug in cobra and reported to the
developers.

• officially gave up.

19

3.4.4 Make highly condensed datasets available to collabora-
tors

Goal: Create a highly condensed dataset and make it available to
collaborators
Actor: Physicist
Trigger: prepare for an analysis
Description: For an analysis a highly condensed data set is needed
that can be spun through fairly quickly. The analysis group has
agreed on the selection criteria and cuts that go into this sample.

1. Needs to select events and write into a new output stream
(event selection, filtering, setting a filter path)

2. Needs to drop banks/objects which are of no interest for the
analysis

3. Makes the data set available.

4. Related to configuration and configuration management/data
base access. Provenance: The data set should include all the
information about how it was created.

4 Detailed analysis of selected use cases

CMS software as well as the software libraries that CMS code de-
pends on are still changing rapidly. Therefore we will give the spe-
cific versions we used. Some of the comments might not apply to
later versions of the software anymore as problems get addressed
by the developers.

4.0.5 Analysis of use case 3.3.2: Print to Standard Output the
Pt of tracks

At the time of the execution of this use case, only one version and
one configuration for each algorithm was supported. The specific
ORCA version that was used is ORCA 8 0 1. Therefore, only the
default configuration and version could be used, which simplified
the use case.

20

I was unable to skip an event that did not use the chosen algo-
rithm. This is because, at the time of this use case, ”reconstruction
on demand” forces the algorithm to be run if it had not previously
been run. It is my understanding that in a subsequent release of
COBRA/ORCA, that there will be a mechanism to disable recon-
struction on demand.

The most difficult part of the use case was determining the set of
shared libraries that needed to be loaded with the executable. For-
tunately, I could use the existing SCRAM BuildFile for the readDST
executable. However, this caused many more shared libraries to be
linked than were needed. Determining the minimal set of libraries
needed was not done.

The code for this use case was, except for the output statements,
almost a subset of readDST, which made it easier than it would
otherwise have been.

The main code for this use case is in appendix B.

4.0.6 Analysis of use case 3.2.3: Create a new algorithm to
find the total energy deposited in the calorimeters for
an event. Make the total energy persistent and write it
into the DST.

The specific ORCA version that was used is ORCA 8 0 1.
The algorithm uses the existing class CaloRecHit for reconstructed

calorimeter hits. However, CaloRecHits does not inherit from Re-
cObj, i.e., it is not a ”standard” reconstructed object. Thus, it can-
not be used as a component of the new algorithm in the standard
manner.

The most difficult part of the use case was determining the set of
shared libraries that needed to be loaded with the executable. For-
tunately, I could use the existing SCRAM BuildFile for the writeDST
executable. However, this caused many more shared libraries to be
linked than were needed. Determining the minimal set of libraries
needed was not done.

The code for this use case was modeled after the code for writ-
eDST, which made it easier than it would otherwise have been.

The main code for this use case is in appendix C.

21

A Glossary

A.1 General

EDM Event Data Model: An Event Data Model(EDM) is a set of
software components which provide a mechanism for manag-
ing data related to an event (i.e. a collision) within a program.
An EDM is not merely a persistency mechanism, nor is it an
input/output mechanism or a file format although it is related
to these things.

Use Case A way to capture and model known functional require-
ments. This is done in a story-like format which makes it
easy to understand and to relate to the users own experience
or interaction with the system for which the requirements are
collected. Use cases are only part of the requirements they
don’t detail e.g. interfaces, speed requirements, type safety....
In fact some requirements are very difficult to express in form
of use cases.

Actor A person or computer program/system that interacts with
our system for the purpose of completing some goal.

Goal A task or job that an actor wants to complete or accomplish.

Stakeholder The entity that benefits or suffers as a result of actors
making use of the system.

Narrative Short paragraphs describing the things that an actor
does to accomplish one goal. A set of these is a collection of
activities that represents what the system is going to do for
us. They will be reviewed and turned into a set of more formal
use cases.

Framework provides a mechanism for constructing programs (typ-
ically: triggering, filtering, reconstruction, analysis, and event
display) programs from independent modules. Often, an EDM
has no knowledge of (or dependence upon) a framework,and a
framework has little or no knowledge of the EDM.

22

Algorithm/module

Observer pattern (active passive

A.2 Acronyms of CMS Object-Oriented Projects

Table 1 presents acronyms and their translations for several of the
major CMS Object-Oriented projects. Detailed descriptions of these
projects can be found at the CMS Object-Oriented home page [1].

Table 1: Selected acronyms for CMS Object-Oriented Projects

Acronym Meaning

ORCA Object-oriented Reconstruction for CMS Analysis
IGUANA Interactive Graphical User ANAlysis
IGUANACMS Interactive Graphical User ANAlysis for CMS
DDD Detector Description Database
OSCAR Object-Oriented Simulation for CMS Analysis

and Reconstruction
FAMOS CMS Fast Simulation
COBRA Coherent Object-Oriented Base

Reconstruction and Analysis
SCRAM Software Configuration, Release And Management

B Source code for use case 3.3.2

B.1 BuildFile
This is much more than is necessary for th BuildFile
No attempt was made to use only a minimal set of libraries

<external ref=pi use="AnalysisServices/AIDA_Proxy">
<external ref=Aida>

<environment>
<lib name=EcalPlusHcalTower></lib>
<lib name=CaloCluster></lib>
<lib name=HcalRealistic>

23

<Group name=CaloHitReader>
<Group name=CaloRHitWriter>
<Group name=CaloRHitReader>
<Group name=TriggerPrimitiveWriter>
<Use name=Calorimetry>

<lib name=MuonUtilities>
<lib name=CommonNavigation>
<lib name=MuonReconstruction>
<group name=MuonTrackFinder>
<group name=L1TRIGGER>
<lib name=PixelReconstruction>

<lib name=MuonUtilities>
<lib name=MuonIsolation>

<use name=Trigger>
<use name=TrackerReco>

<external ref=gsl>
<Group name=MuonInternalReco>
<Use name=Muon>

<lib name=PrincipalVertexReco></lib>
<lib name=CARFVertex></lib>
<group name=LeastSquaresVertexFit>
<use name=Vertex>

<lib name=PixelTrackFinder>
<group name=TkTrackReader>
<use name=TrackerReco>

<lib name=AdvancedJets></lib>
<lib name=PersistentJet></lib>
<lib name=KtJets></lib>
<group name=JetsFromGeneratorParticles>
<group name=JetsFromEcalPlusHcalTowers>
<use name=Jets>

<lib name=L1GlobalTrigger>
<lib name=L1Trigger>
<lib name=L1PersistentTrigger>

<Group name=EgammaBase>
<Group name=EgammaSetup>

24

<Group name=EgammaEscale>
<lib name=ClusterTools>
<lib name=EgammaBasicClusters>
<lib name=EgammaSuperClusters>
<lib name=EgammaPreshower>
<use name=ElectronPhoton>

<Group name=GeneratorCARFReader>
<External ref=COBRA Use=GeneratorInterface>

<group name=RecReader>
<External ref=COBRA Use=CARF></Use>

<bin file=UseCase.cpp>To print the DST contents</bin>
</environment>

B.2 UseCase1.cpp
#include "Utilities/Configuration/interface/Architecture.h"
#include "Utilities/Notification/interface/PackageInitializer.h"
#include "Examples/ExUtils/interface/ExDumpRunEventRecReader.h"

#include "Utilities/Notification/interface/Observer.h"
#include "CARF/Reco/interface/RecCollection.h"
#include "CARF/Reco/interface/RecQuery.h"
#include "Utilities/Notification/interface/PackageInitializer.h"
#include "Utilities/GenUtil/interface/CMSexception.h"
#include "Utilities/Notification/interface/TimingReport.h"

#include "Calorimetry/EcalPlusHcalTower/interface/EcalPlusHcalTower.h"
#include "CommonReco/PatternTools/interface/TTrack.h"
#include <iostream>
#include <iomanip>

class G3EventProxy;

class UseCase : private Observer<G3EventProxy*>
{

public:

UseCase() : theTkCollection(0) {
Observer<G3EventProxy*>::init();

}
˜UseCase() {

25

delete theTkCollection;
}

private:
virtual void analysis();

void upDate(G3EventProxy* ev) {
if (ev != 0) {

analysis();
}

}

RecCollection<TTrack>* theTkCollection;
};

void UseCase::analysis() {
if (theTkCollection == 0) {

theTkCollection =
new RecCollection<TTrack>(RecQuery("CombinatorialTrackFinder","0.0"));

}
cout<<"Found "<<theTkCollection->size()<<" Tracker tracks."<<endl;
for(RecCollection<TTrack>::const_iterator it=theTkCollection->begin();

it!=theTkCollection->end(); it++) {
GlobalVector p = (*it)->momentumAtVertex();
cout << setprecision(4) << showpoint << "p="

<< setw(8) << p.mag() << " GeV, pt="
<< setw(8) << p.perp() << " GeV, theta="

<< setw(8) << p.theta() << " rad, phi="
<< setw(8) << p.phi() << " rad, eta="
<< setw(8) << p.eta() << endl;

}
}

PKBuilder<UseCase> eventAnalyser("UseCase");

B.3 orcarc
CARFVerbosity = silent
CobraSignalHandler = false
FinalAbort = true
ForceExit = true
TextColor = false
TimingReport = true

FirstEvent = 0

26

MaxEvents = 2

#Input File catalog is defaulted
InputCollections = /System/myDST/h300eemm

CaloDataFrame:SuppressionStyle = 2
TFileAdaptor = true
NoAncestor = true

C Source code for use case 3.2.3

C.1 BuildFile
This is much more than is minimally needed.
No attempt was made to get a minimal set.
<environment>

<lib name=EcalPlusHcalTower></lib>
<lib name=CaloCluster></lib>
<lib name=CaloEnergy></lib>
<Group name=CaloRecHitReader>
<Use name=Calorimetry>

<Group name=MuonInternalReco>
<Use name=Muon>

<lib name=PrincipalVertexReco></lib>
<lib name=CARFVertex></lib>
<group name=LeastSquaresVertexFit>
<use name=Vertex>

<lib name=PixelTrackFinder>
<group name=TkTracks>
<use name=TrackerReco>

<lib name=AdvancedJets></lib>
<lib name=PersistentJet></lib>
<lib name=KtJets></lib>
<group name=JetsFromGeneratorParticles>
<group name=JetsFromEcalPlusHcalTowers>
<use name=Jets>

<Group name=L1GLOBAL>
<Use name=Trigger>

27

<Group name=EgammaBase>
<Group name=EgammaSetup>
<Group name=EgammaTracks>
<Group name=EgammaEscale>
<Group name=EgammaSelections>
<Group name=EgammaL1>
<lib name=ClusterTools>
<lib name=EgammaBasicClusters>
<lib name=EgammaSuperClusters>
<lib name=EgammaPreshower>
<lib name=EgammaOfflineReco>
<lib name=EgammaCalibObject>
<Group name=EgammaElectron>
<Group name=EgammaMC>
<Group name=EgammaPhoton>
<use name=ElectronPhoton>

<Group name=GeneratorCARFReader>
<External ref=COBRA Use=GeneratorInterface>

<Group name=HLTXML>
<Group name=HLT_EGamma>
<Group name=HLT_Muon>
<Group name=HLT_JetMet>
<lib name=HLTbtau>
<lib name=TkPartialReco>
<use name=HLT>

<group name=BTagCombined>
<use name=BReco>
<lib name=D0PhiSecondaryVertexReco>

<group name=METreconstruction>
<use name=MET>

<group name=RecReader>
<External ref=COBRA Use=CARF></Use>

<bin file=UseCase2.cpp>To write total calorimeter energy</bin>
</environment>

C.2 classes def.xml
<lcgdict>

28

<class name="CaloEnergy"/>
</lcgdict>

C.3 classes.h
#include "Utilities/Configuration/interface/Architecture.h"
#include "Calorimetry/CaloEnergy/interface/CaloEnergy.h"

namespace {
namespace {
}

}

C.4 CaloEnergy.h
#ifndef CaloEnergy_h
#define CaloEnergy_h

#include "CARF/Reco/interface/RecObj.h"

class CaloEnergy : public RecObj
{
public:

CaloEnergy() : energy_(0) {}
explicit CaloEnergy(double e) : energy_(e) {}

virtual ˜CaloEnergy(){}

double energy() const {return energy_;}

private:
double energy_;

};

#endif

C.5 CaloEnergyBuilder.cpp
#include "Utilities/Configuration/interface/Architecture.h"
#include "Calorimetry/CaloRecHit/interface/CaloRecHit.h"
#include "Calorimetry/CaloEnergy/src/CaloEnergyBuilder.h"

29

#include "Calorimetry/CaloEnergy/interface/CaloEnergy.h"
#include "Calorimetry/CaloCommon/interface/CaloItr.h"

#include "CARF/Reco/interface/ParameterSetBuilder.h"
#include "CARF/Reco/interface/ComponentSetBuilder.h"
#include "CARF/Reco/interface/RecConfig.h"
//--

CaloEnergyBuilder::CaloEnergyBuilder(const RecConfig& config) :
RecAlgorithm<CaloEnergy>(config) {
setMeAsDefault();

// initialize the reconstruction parameters
HCALcutoffEnergy= parameter<double>("HCALcutoffEnergy");
ECALcutoffEnergy=parameter<double>("ECALcutoffEnergy");

std::cout << std::endl <<
"CaloEnergyBuilder:HCALcutoffEnergy = " << HCALcutoffEnergy << std::endl

<< "CaloEnergyBuilder:ECALcutoffEnergy = " << ECALcutoffEnergy
<< std::endl ;

}
//--

CaloEnergyBuilder::˜CaloEnergyBuilder() {
}

//--
RecConfig
CaloEnergyBuilder::defaultConfig() {

Name name("CaloEnergyBuilder");
Version version("1.0");

ParameterSetBuilder param_set_builder;
const double default_tolerance = 0.001; // tolerance for parameter comparison
param_set_builder.addParameter("HCALcutoffEnergy",0.0,default_tolerance);
param_set_builder.addParameter("ECALcutoffEnergy",0.0,default_tolerance);

ComponentSetBuilder component_set_builder;
return RecConfig(name,version,param_set_builder.result(),

component_set_builder.result());
}

//--

30

void CaloEnergyBuilder::reconstruct() {
double energy=0.0;

CaloItr<CaloRecHit> hcalhit(SuId("HR","HCAL","01"));
while(hcalhit.next()) {

if (hcalhit->energy() > HCALcutoffEnergy) energy += hcalhit->energy();
}
CaloItr<CaloRecHit> ebryhit(SuId("CR","EBRY","01"));
while(ebryhit.next()) {

if (ebryhit->energy() > ECALcutoffEnergy) energy += ebryhit->energy();
}
CaloItr<CaloRecHit> efryhit(SuId("CR","EFRY","01"));
while(efryhit.next()) {

if (efryhit->energy() > ECALcutoffEnergy) energy += efryhit->energy();
}
addObjToReconstructor(new CaloEnergy(energy));

}
//--
#include "Utilities/Notification/interface/PackageInitializer.h"
#include "CARF/Reco/interface/RecBuilder.h"
static PKBuilder<RecBuilder<CaloEnergyBuilder> >

calo_energy_builder_factory("CaloEnergyBuilderBuilder");

C.6 CaloEnergyBuilder.h

#ifndef CaloEnergyBuilder_h
#define CaloEnergyBuilder_h

#include "CARF/Reco/interface/RecAlgorithm.h"
class CaloEnergy;

class CaloEnergyBuilder : public RecAlgorithm<CaloEnergy>
{
public:

static RecConfig defaultConfig();

explicit CaloEnergyBuilder(const RecConfig& config = defaultConfig());

virtual ˜CaloEnergyBuilder();

void reconstruct();

31

private:

double HCALcutoffEnergy;
double ECALcutoffEnergy;

};

#endif

C.7 UseCase2.cpp
// include a helper class to print run/event numbers
#include "Utilities/Configuration/interface/Architecture.h"
#include "Utilities/Notification/interface/PackageInitializer.h"
#include "Examples/ExUtils/interface/ExDumpRunEventRecReader.h"

#include "Utilities/Notification/interface/Observer.h"
#include "CARF/Reco/interface/RecCollection.h"
#include "CARF/Reco/interface/RecQuery.h"
#include "Utilities/Notification/interface/PackageInitializer.h"
#include "Utilities/GenUtil/interface/CMSexception.h"

#include "Calorimetry/CaloEnergy/interface/CaloEnergy.h"

#include <iostream>

class G3EventProxy;

class UseCase : private Observer<G3EventProxy*>
{

public:

UseCase() : theCaloCollection(0) {
Observer<G3EventProxy*>::init();

}

˜UseCase() {
delete theCaloCollection;

}

virtual void analysis();

private:

32

void upDate(G3EventProxy* ev) { if (ev != 0) analysis(); }

RecCollection<CaloEnergy>* theCaloCollection;
};

void UseCase::analysis() {

if (theCaloCollection == 0) {
theCaloCollection =
new RecCollection<CaloEnergy>(RecQuery("CaloEnergyBuilder","1.0"));

}
cout << "Found " << theCaloCollection->size() << " CaloEnergy." << endl;

double energy = 0.0;
for(RecCollection<CaloEnergy>::const_iterator it=theCaloCollection->begin();

it!=theCaloCollection->end(); ++it) {
energy += (*it)->energy();

}
cout <<

"Total energy" << setw(8) <<
setprecision(4) << energy << " GeV" << endl;

}

PKBuilder<UseCase> myEventAnalyser("UseCase");

C.8 orcarc
InputCollections =/System/Digis/h300eemm
MaxEvents = -1

OutputDataSet = /System/myDST/h300eemm
OutputRunNumber = 5

CMSRandom:Seeds = 40 3

#----
GoPersistent = true

DBPopulator:CommitInterval = 10

33

#---- the stuff for the Digis to add ----
Events:Location = Events
Collections:Location = Events

#--- the name of the RecAlgorithm to store the output from
CaloEnergyBuilder:Persistent = true
##--- where to store it ------------------------
CaloEnergyBuilder:Location = DST

References

[1] http://cmsdoc.cern.ch/cmsoo/cmsoo.html

[2] http://computing.fnal.gov/cgi-
bin/docdb/public/DocumentDatabase/ CD-doc-
435-v1

34

	1 Introduction
	2 Findings
	2.1 Reconstruction on Demand
	2.1.1 Reconstruction on Demand - Advantages
	2.1.2 Reconstruction on Demand - Disadvantages

	3 Use Cases
	3.1 Trigger
	3.1.1 Start algorithm B only if Algorithm A finished successfully
	3.1.2 Start algorithm C only if Algorithm A finished successfully and Algorithm B didn't find any object
	3.1.3 Use RecCollection created by an algorithm correctly in a second algorithm.
	3.1.4 On line Monitoring of data quality

	3.2 Reconstruction
	3.2.1 Creating hierarchical objects
	3.2.2 Creating a new algorithm (Vertex fitter)
	3.2.3 Create new algorithm and make persistent

	3.3 Analysis
	3.3.1 Find out which algorithms have been run already within an event
	3.3.2 Print to Standard Output the Pt of tracks
	3.3.3 Locating EMobjects and references Tracks
	3.3.4 Comparing two track collections
	3.3.5 Navigating hierarchical objects
	3.3.6 Run the detector simulation and reconstruction with a different geometry
	3.3.7 Create more Monte Carlo Data
	3.3.8 Analysis without framework
	3.3.9 User Interface: Interacting with the framework
	3.3.10 Interaction with physics object/Algorithm

	3.4 Data Handling and Data Access?
	3.4.1 Availability of datasets
	3.4.2 Create self-contained dataset
	3.4.3 Combining data from different processing streams
	3.4.4 Make highly condensed datasets available to collaborators

	4 Detailed analysis of selected use cases
	4.0.5 Analysis of use case 3.3.2: Print to Standard Output the Pt of tracks
	4.0.6 Analysis of use case 3.2.3: Create a new algorithm to find the total energy deposited in the calorimeters for an event. Make the total energy persistent and write it into the DST.

	A Glossary
	A.1 General
	A.2 Acronyms of CMS Object-Oriented Projects

	B Source code for use case 3.3.2
	B.1 BuildFile
	B.2 UseCase1.cpp
	B.3 orcarc

	C Source code for use case 3.2.3
	C.1 BuildFile
	C.2 classes_def.xml
	C.3 classes.h
	C.4 CaloEnergy.h
	C.5 CaloEnergyBuilder.cpp
	C.6 CaloEnergyBuilder.h
	C.7 UseCase2.cpp
	C.8 orcarc

